
Learning Microsoft Visual Basic 4.0

Instructions Adding Menus

How Visual Basic Works Debugging Your Application

Creating an Application Accessing Databases

Writing Event-Driven Programs Introduction to OLE Automation
Objects

Working with Forms and
Controls

Using Color and Graphics

How to use the Learning Visual Basic Tutorial

Use the following buttons to navigate through the tutorial:

To go forward in a lesson, click the Next button.
To go backward in a lesson, click the Back button.
To return to the main menu, click the Contents button.

    How Visual Basic Works
Visual Basic provides many tools that you can use to design graphical applications.    This lesson will
introduce:
· Projects · The Visual Basic language
· Forms and Controls · Menu bars
· Modules · The Color palette

    How Visual Basic Works
A project is a collection of the form modules, standard modules, class modules, and resource file that
make up an application.    The project window lists all the files in an application.

    How Visual Basic Works
A form includes the controls and code associated with that form.    You can share code throughout an
entire project by putting the code in a form module or standard module and declaring the procedure
Public.

    How Visual Basic Works
You create forms to serve as the interface of your application.    Each form is a window that displays
controls, graphics, or other forms.

    How Visual Basic Works
You can use forms in many different ways:

    How Visual Basic Works
Controls are tools such as boxes, buttons, and labels you draw on a form to get input or to display
output.    They also add visual appeal to your forms.
You use the Toolbox to draw controls on a form.

    How Visual Basic Works

You set the properties of forms and controls by using the Properties window.    Properties specify the
initial values for such characteristics as size, name, and position.
The Properties window lists all the properties and their settings for the currently selected module or
control.

    How Visual Basic Works
In applications with many commands, Visual Basic lets you group your commands on a menu bar.

Instead of crowding your form with
command buttons . . .

. . . you can organize your commands on a
menu bar along the top of the form.

    How Visual Basic Works
You design menus for your forms in the Menu Editor.
You can display this window by choosing Menu Editor from the Tools menu or by clicking the Menu
Editor button on the toolbar.

    How Visual Basic Works
Visual Basic also provides a Color palette with 48 standard colors you can use to add color to your
forms.    Visual Basic can take advantage of 256-color, high-color, and true-color systems.

    How Visual Basic Works
To make an application respond to user actions or system events, you write code for your forms and
controls.

    How Visual Basic Works
Visual Basic 4.0 now includes Visual Basic for Applications, the same language found in many Microsoft
Office applications including Microsoft Excel and Microsoft Project.    Language features include:   

If...Then...Else blocks Loops

If Pop > 0 And GNP > 0 Then
      Income = GNP / Pop
Else
      Income = 0
End If

Do While I <= 50
      Print I
      I = I + 1
Loop

Eleven data types Numerous math and string functions

Integer Currency
Long String
Single Boolean
Double Object
Variant User-defined Type
Byte

Abs(Rate)

Print UCase(Country)

MySqr = Sqr(4)

MyStr = Right(AnyString, 6)

    How Visual Basic Works
To help you review your code quickly, Visual Basic provides:
· Automatic syntax checking

Visual Basic displays a message when it finds an error in your syntax.

    How Visual Basic Works
To help you review your code quickly, Visual Basic provides:
· Automatic syntax checking
· Debugging tools

    How Visual Basic Works
To help you review your code quickly, Visual Basic provides:
· Automatic syntax checking
· Debugging tools
· A Debug window

    How Visual Basic Works
The Visual Basic toolbar provides shortcuts for many common design and debugging commands.

    How Visual Basic Works
By combining the Visual Basic forms, tools, and programming language, you can build powerful
applications quickly and easily.

    How Visual Basic Works
This lesson introduced you to the Visual Basic development environment.
In the following lessons, you'll learn how to use Visual Basic to create applications.

    How Visual Basic Works

    Writing Event-Driven Programs
This lesson will introduce you to:
· Event-driven programming
· Event procedures
· Syntax for events

    Writing Event-Driven Programs
The user interface of a Visual Basic application is made of objects the forms and the controls you use
to enable users to enter and view information.    Each of these objects recognizes actions, such as the
user clicking a button, opening a form, or typing in a field.    These actions are referred to as events.

    Writing Event-Driven Programs
When an event occurs in your application, Visual Basic automatically recognizes the event and runs the
code that you've written for it.    This code is called an event procedure.

    Writing Event-Driven Programs
An event procedure name is made up of an object name and an event name.    The object name is set
by the form or control's Name property.      There can be one or more statements in an event procedure.

    Writing Event-Driven Programs
Each form and control in Visual Basic responds to a predefined set of events.    For example, a
command button recognizes the following events.
Event Action
Click Button is selected with mouse or keyboard.
DragDrop Control is dropped on the button.
DragOver Control is dragged over the button.
GotFocus Button gets the focus.
KeyDown Key is pressed while button has the focus.
KeyPress Key is pressed, and ASCII value is returned.
KeyUp Key is released while button has the focus.
LostFocus Button loses the focus.
MouseDown Mouse button is pressed down over the button.
MouseMove Mouse pointer is moved over the button.
MouseUp Mouse button is released over the button.

    Writing Event-Driven Programs
You refer to a control and its properties in code using the object.property notation.    For example,
to refer to text displayed in a text box, the syntax would look like this:

    Writing Event-Driven Programs
An event procedure runs only when the event occurs, and Visual Basic remains idle until that happens.   
For instance, the procedure below only runs when the OK button is clicked or when ENTER is pressed.

    Writing Event-Driven Programs
By clicking the OK button, you've run the code in this event procedure.    Every time the button is clicked,
the code runs again.
You need to write code only for the events that you want your application to respond to.

    Writing Event-Driven Programs
To determine which events to write code for, think about what the user will do, and how you want the
program to respond.
For example, you might want to check the contents of the text box when the user chooses the OK
button.
Clicking the OK button triggers the cmdOKButton_Click event.

    Writing Event-Driven Programs
Event procedures can also:
· Trigger other event procedures.

    Writing Event-Driven Programs
Event procedures can also:
· Trigger other event procedures.
· Change an object's properties.

    Writing Event-Driven Programs
Event procedures can also:
· Trigger other event procedures.
· Change an object's properties.
· Call other general procedures that are not tied to any event.

    Writing Event-Driven Programs
This lesson covered:
· Event-driven programming
· Event procedures
· Syntax for events

For more information on event-driven programming, see the lesson "Debugging Your Application" or
Chapter 5, "Programming Fundamentals," in the Programmer's Guide.

    Writing Event-Driven Programs

    Creating an Application
This lesson demonstrates how to build a Visual Basic application.

This sample application converts temperatures
between Fahrenheit and Celsius.

    Creating an Application
The Temperature Conversion application consists of these elements:

    Creating an Application
There are three steps to creating an application:

1. Create the interface.

2. Set properties.

3. Write code.

    Creating an Application
1.    Create the interface.
To create an application, you first need to open a new project.

You open a project by choosing the New Project
command from the File menu.

    Creating an Application
Every new project contains one form.    You can add as many additional forms as your application needs.
The Temperature Conversion application requires only one form.

    Creating an Application
Next, you can select the tools you need from the Toolbox to draw the controls you want on the form.
In this application, text boxes accept user input and display text.

    Creating an Application
To create a control, select the tool from the Toolbox, and then hold down the left mouse button while
dragging out an area on the form.
You can create a control in the default size by double-clicking the tool or selecting a tool and pressing
ENTER.

    Creating an Application
We'll create two text boxes, one for Fahrenheit temperatures and one for Celsius temperatures.
To describe the contents of each text box, we'll use labels.    Labels can't be changed by the user.

    Creating an Application
2. Set properties.
You set the properties of a control in the Properties window.
When you select a form or control, its properties and their settings are displayed in the Properties
window.

    Creating an Application
You use the Name property to refer to a control in code.    In this case, we'll make txtCels the name of
this text box.

    Creating an Application
The Caption property specifies the text that is displayed in the control.    We'll change the label's Caption
property to Celsius.

    Creating an Application
Now, we'll change the Name property of the other text box to txtFahr and the Caption property of its label
to Fahrenheit.

    Creating an Application
3. Write code.
We now need to add code to make the application respond to the user's actions.

    Creating an Application
When you double-click a control, the focus shifts to the Code window.    The code template for the
selected control's default event procedure is displayed.
The name of the control appears in the Object list box.

    Creating an Application
The Procedure list box contains a list of events for the control.
Since we want to run the code in this application when a user presses a key, we'll select the KeyPress
event from the Procedures list box.
Visual Basic then displays the template for the event procedure we want to write.

    Creating an Application
We'll use the following formulas to convert the temperatures:

Cels = (Fahr - 32) * 5/9
Fahr = (Cels * 9/5) + 32

Next, we'll enter the code for the event procedure.

    Creating an Application
Now we'll attach a similar event procedure to the other text box.

    Creating an Application
When you finish working on your application, you'll want to save the project.
Choosing Save Project from the File menu prompts you to assign a name to the project.

    Creating an Application
You can test your application by choosing Start from the Run menu or by clicking the Start button () on
the toolbar.
You can also use the debugging tools to help locate and fix problems in your application.

    Creating an Application
When you run the application, it will convert Celsius to Fahrenheit, or Fahrenheit to Celsius when you
type in a number and press the Enter key.

    Creating an Application
When your application is exactly the way you want it, you can make it into an executable file.    This
allows you, and other users, to run the application outside the Visual Basic environment.
To create an executable file from your project, you use the Make EXE File command from the File menu.

    Creating an Application
This lesson demonstrated how to create a simple application:
1. Create the interface.
2. Set properties.
3. Write code.

The lessons that follow explain the parts of a Visual Basic application in more detail.
For more information, see Chapter 2, "Your First Visual Basic Application," in the Programmer's Guide.

    Creating an Application

    Introduction to OLE Automation Objects
This lesson will introduce you to objects and OLE Automation.

    Introduction to OLE Automation Objects
Many Windows-based applications, including Visual Basic, are composed of different objects.    Each
object is a combination of code and data that can be treated as a unit.    An object can be a piece of an
application, like a control or a form.    An entire application can also be an object.
Some examples of objects include:

Form Database Chart

Command button

    Introduction to OLE Automation Objects
Because each object is a unit of code designed for a specific purpose, you can create applications by
combining different types of objects together.

    Introduction to OLE Automation Objects
Each object is defined by a class.    The class defines the characteristics of the object.    In Visual Basic,
the Properties window displays the class name of each object.

    Introduction to OLE Automation Objects
Visual Basic defines many types of objects you can use in applications, but you may need capabilities
not available from existing classes.    In this case you can use class modules to define new classes, or
types of objects within Visual Basic.
Class modules allow you to define your own types of objects, and create properties and methods for
them.    The properties and methods become members of the class.    The new class can be private to
your application.      You can also make it accessible to other applications.

    Introduction to OLE Automation Objects
You might decide, for example, that you need a 'work order object' for a new application.    You can insert
a class module in your project and then add code to create the properties and methods needed to
provide the behaviors and characteristics of a work order.   

    Introduction to OLE Automation Objects
Other applications expose objects you can use in Visual Basic 4.0 applications.    For example:

    Introduction to OLE Automation Objects
Objects that are provided by other applications are called OLE automation objects.    You can perform
many of the same tasks with OLE Automation objects that you can with Visual Basic objects.    For
instance, you can:
· Set Properties.
· Return properties.
· Invoke an object's methods.

    Introduction to OLE Automation Objects
Visual Basic uses OLE Automation to communicate with other applications.    OLE Automation is an
industry standard, designed to provide a consistent way for applications to share objects.    Applications
that provide objects are called OLE servers, while applications that use objects are controlling
applications.

    Introduction to OLE Automation Objects
The easiest objects to use are those whose applications include an object library.    To use these objects,
use the References dialog box, available from the Tools menu.

    Introduction to OLE Automation Objects
If the object library is already listed, select the check box next to its name.      If it isn't listed, use the
browse button to search for either .TLB or .OLB extensions.    You can also search for .EXE and .DLL
files since they sometimes contain object libraries.

    Introduction to OLE Automation Objects
After you set a reference to the object library, you can view the objects contained in that library with the
Object Browser.    In addition, you can also view the properties and methods associated with each
object.

    Introduction to OLE Automation Objects
To use an OLE Automation object, you must:
1. Create storage for a variable of an object type.
2. Set the variable to reference a new or existing object.
3. Write code using the object's properties and methods.
4. Release the object when finished.

    Introduction to OLE Automation Objects
1. Create Storage for a Variable of an Object Type
To create storage, declare an object variable:

Dim objX As Object

    Introduction to OLE Automation Objects
2. Set the Variable to Reference a New or Existing Class
If you need to create a new instance of a class, use the CreateObject function.    For example, this will
create a new Microsoft Excel Worksheet object:

Set objX = CreateObject("Excel.Sheet")
If the object already exists in a file, you can use the GetObject function to load it.    For example, this will
set a reference to an existing Microsoft Excel Worksheet object:

Set objX = GetObject("C:\EXCEL\REVENUE.XLS")

    Introduction to OLE Automation Objects
3. Write Code Using the Object's Properties and Methods
Now you have a reference to an object provided by another application.    You can use this object much
like you would use a control provided by Visual Basic.    For example, using the Microsoft Excel
Worksheet object, objX, we can add data to cells in the worksheet using the worksheet's properties and
methods.

objX.Application.Visible = True
For i = 1 to 10

objX.Cells(i,i).Value = i
Next i

The Microsoft Excel Worksheet in this example is a visual object.    You can mix and match visual objects
from other applications on a form as shown earlier in this lesson.    Objects without visual interfaces,
such as data access objects, cannot be placed on a form but can still be accessed and manipulated
through Visual Basic code.

    Introduction to OLE Automation Objects
4. Release the Object When Finished
Open objects consume resources.    When you are finished using an object, clear any variables that
reference the object so the object can be released from memory.    To clear an object, set it to Nothing.   
For example:

Set objX = Nothing

    Introduction to OLE Automation Objects
This lesson introduced you to objects and OLE Automation.
For more information on using objects and OLE Automation, see Chapter 7, "Introduction to Objects,"
and Chapter 9, "Programming Other Applications' Objects," in the Programmer's Guide.

    Introduction to OLE Automation Objects

    Accessing Databases
Visual Basic includes the Microsoft Jet database engine, the same engine that powers Microsoft Access.
Using Visual Basic, you can display, edit, and update information from many types of databases.
· In Visual Basic Standard edition, you can use the data control to access information in existing

databases.
· In Visual Basic Professional, you can also create or modify databases using the Data Access Objects

programming interface.

    Accessing Databases
The data control provides the easiest way to access information in an existing database.    Double-click
the data control to add it to your form.

    Accessing Databases
After you add the data control to your form, you set properties for it. The DatabaseName property
specifies the database you want to access.

    Accessing Databases
In this case, we'll use the sample database that ships with Visual Basic 4.0.    The name of the database
is BIBLIO.MDB.

    Accessing Databases
You next set the RecordSource property. Click the down arrow to display a list of tables and queries
stored in the database.
We'll set the RecordSource to Titles.

    Accessing Databases
We'll now add a text box to the form.    For the text box to display information from our database, we
must first "bind" the text box to the data control.

    Accessing Databases
To bind the text box to the data control, you set the DataSource property of the text box to the name of
the data control.
Since only one data control is on the form, that is the only item that appears in the list.

    Accessing Databases
After the text box is bound to the data control, you can set the field that the text box will display. Click the
down arrow for the DataField property to display a list of available fields for the current DataSource.
We'll set the DataField to Title.

    Accessing Databases
Next we'll add a label and set its caption property to Title.

    Accessing Databases
Now we'll add two more text boxes and two more labels.    The text boxes are set to display values in the
ISBN number and the Year Published fields.

    Accessing Databases
When you run the application, the text boxes display information from the three fields you specified.
You can click the buttons on the data control to scroll between records in the database.

    Accessing Databases
This lesson provided an introduction to using the data control.
For more information on accessing databases, see Chapter 22, "Accessing Databases with the Data
Control," in the Programmer's Guide.

    Accessing Databases

    Using Color and Graphics
With Visual Basic, you can easily add color and graphics to an application.   
This lesson covers:
·    Using graphics
·    Using colors
·    Changing graphics and colors with code
·    Designing forms with graphics and colors

    Using Color and Graphics
Graphics can increase the usefulness of and add visual impact to your forms.

A frame can contain other controls. A picture box or an image control
can display a bitmap, an icon,
or a metafile.

Lines and shapes can be added
to forms to emphasize information.

The Visual Basic language can be
used to draw other shapes.

    Using Color and Graphics
Graphics methods in the Visual Basic language also let you create graphics in your application.   
Creating graphics with graphics methods is done in code, so these images appear on your form only
when the application is running.

    Using Color and Graphics
Adding color to your forms and controls can make your applications more attractive and easier to use.

    Using Color and Graphics
You set the color properties of objects in the Properties window.

    Using Color and Graphics
You can define your own colors and add them to the Color palette.
You can have up to 16 custom colors at one time.

    Using Color and Graphics
You can use Visual Basic code to display graphics in response to an event.

    Using Color and Graphics
You can also use Visual Basic code to change the color of an object while your application is running.   
For example:

    Using Color and Graphics
You can design custom command buttons for a form by attaching code to an image control or a picture
box.

    Using Color and Graphics
Using color and graphics effectively is an art.    In the following screens, we offer some basic tips on the
different ways you can enhance your applications.

    Using Color and Graphics
You can make your forms easier to use by applying the same color to similar types of fields.   

    Using Color and Graphics
Similarly, you can use different colors to identify different sections of a form.

    Using Color and Graphics
As you design your forms, try to avoid using too many colors.    You'll have better results if you pick one
group of colors and stick to them.

In this form, one color is used for
the background for all fields.

Here, a different color is used for
each field.    Notice how the form
appears too busy and distracting.

    Using Color and Graphics
When designing applications that rely extensively on color, you may find it helpful to use a color guide or
work with a designer to make the best use of color in your applications.

    Using Color and Graphics
This lesson discussed using color and graphics in your Visual Basic applications.
For more information on graphics, see Chapter 15, "Creating Graphics for Applications," in the
Programmer's Guide.

    Using Color and Graphics

    Working with Forms and Controls
This lesson will introduce:
· Forms
· Adding controls
· Setting properties
· Creating event procedures

    Working with Forms and Controls
A form is a window or dialog box that you create with Visual Basic.
When you create a form, it is initially displayed in a default location and size.    You can change both the
location and the size of the form to suit the design of your application.

    Working with Forms and Controls
You draw graphical objects called controls on a form to accept user input or display output.
You draw a control by selecting one of the tools from the Toolbox.

    Working with Forms and Controls
Each control in the Toolbox has built-in capabilities. For example, even if you don't write code for text
boxes, users can still cut and paste text in them.

To learn more about each control:
 Click the control in the Toolbox.

    Working with Forms and Controls
In addition to the controls that are built into Visual Basic, you can also add custom controls from
Microsoft and other companies.    Just as with the standard controls, custom controls have built in
capabilities.
To add a custom control, select Custom Controls from the Tools menu.

    Working with Forms and Controls
The Custom Controls dialog displays all available custom controls and insertable objects, such as a
Microsoft Excel Chart, that can be added to your Toolbox.    Select the check box next to each item you
want to add.

    Working with Forms and Controls
Every form and control has a predefined set of properties.    These properties determine:

· Appearance the color, size, and name of the object.

· Behavior whether the user can move, size, minimize, or maximize the object.

    Working with Forms and Controls
You set the initial values for properties using the Properties window.
The Properties list displays all the available properties for the selected form or control.
Next to each property is a setting you can edit.
The Object box shows the currently selected form or control.

    Working with Forms and Controls
If you want to set the same properties for several controls, you can select the group, then set the
common properties all at once.
· Click and drag to select the group of controls you want to set properties for.
· The Properties window will then display the properties common to the controls you've selected.

    Working with Forms and Controls
You can use frames to visually group or separate some of the controls on your form.
To put an object inside of another object, you must create the container first, and then place the object
inside it.

    Working with Forms and Controls
If you want several controls to share the same code, you can put those controls in a control array.    A
control array is a group of the same type of controls, such as option buttons, that share the same name,
and can also share the same event procedure.

    Working with Forms and Controls
When you create a duplicate name, Visual Basic asks if you want to create a control array.

    Working with Forms and Controls
To refer to an individual item in a control array, you use an index value.    In the Click event for the option
button array, for example, notice the parameter index As Integer.    This indicates that the first option
button will be referred to as Option 1(1), the second as Option1(2), and so on.

    Working with Forms and Controls
You can run any application you're working on by choosing Start from the Run menu or by clicking the

Start button () on the toolbar.

    Working with Forms and Controls
This lesson introduced you to forms, controls, properties and control arrays.      The next lesson covers
adding menus to forms.
For more information on designing forms, see Chapter 2, "Your First Visual Basic Application," and
Chapter 3, "Creating and Using Controls," in the Programmer's Guide.

    Working with Forms and Controls

 Pointer
The pointer is used to manipulate existing controls on your form.    With the pointer, you can select,
move, and size forms and controls.
When you select a tool from the Toolbox, your mouse pointer changes to a cross hair.    After you create
a control, your mouse pointer changes back to the pointer.

 Label
A label displays text that cannot be changed by the user.    The text can be changed by the application at
run time, however, in response to an event.
You can use a label to display information for the user.    For example, you could show the time or the
progress of a file-copying operation.

 FileListBox
The file list box displays all the files in a given directory.    You can display a list of files based on file
attributes, and users can select a file from the list.
You can use a file list box as part of a dialog box used to open a file.

 DirListBox
The directory list box displays the directories and paths of the current drive at run time.    You can use
this control to display a hierarchical list of directories from the root to the selected path.
You can use the directory list box as part of a dialog box used to open a file.

 DriveListBox
The drive list box finds and switches among valid drives at run time.    It displays a list of the user's valid
drives.
You can use the drive list box control as part of a dialog box used to open a file.

 Timer
A timer can be used to cause actions to occur at regular intervals while your application is running.
For example, you can use a timer to update a clock display in your application.

 VScrollBar
Vertical scroll bars allow the user to move vertically within lists or through large amounts of information.   
They also provide a graphical way of displaying and setting values.
For example, you could add vertical scroll bars to a temperature conversion application to show
temperatures rising and falling.

 HScrollBar
Horizontal scroll bars allow the user to move horizontally within lists or through large amounts of
information.    They also provide a graphical way of displaying and setting values.
For example, you could use a horizontal scroll bar to set the volume for an application that plays music
or to show how much time has elapsed.

 ListBox
A list box contains a scrollable list from which the user can select one or more items.
For example, you can display a list of names in a list box and have the user choose from the list.

 ComboBox
A combo box combines a text box and a list box.    The user can either type in the text box or select
items from the list box.    There are three types of combo boxes: drop-down combo boxes, simple combo
boxes, and drop-down list boxes.
You can use drop-down combo boxes and list boxes to save room on your forms.

 OptionButton
An option button is used to select an option, usually from among a group of option buttons.    When an
option button is selected, the button has a black center.    Unlike a group of check boxes, only one option
button can be selected from a group.
For example, you might use an option button group to indicate the method of payment (cash, check, or
credit card) for an invoice.

 CheckBox
A check box is used for an option that can be turned on and off.    When the user selects the option, an X
is displayed in the check box.    Check boxes can be used to give the user a yes/no or true/false option.
You can use check boxes for options that users can select in any combination, such as bold, italic, and
underline formatting.

 CommandButton
A command button carries out an action when the user chooses it.    Typically, the user chooses a
command button by clicking it or by pressing the SPACEBAR when it is selected.
OK and Cancel buttons are examples of command buttons.    Or you might create a command button
that a user can choose to open another form.

 Frame
A frame provides a graphical and functional grouping for controls.    Objects are put into frames to
separate them visually from other controls.
You can place option buttons in a frame to create an option button group.

 TextBox
A text box is an area in which text can be entered by the user or displayed by the application.    A text
box can contain one or more lines of text and can be scrollable.
For example, in a security-system application, you might use a text box to prompt a user for a password.

 Shape
The shape control displays a circle, square, oval, rectangle, rounded rectangle, or rounded square.   
Unlike graphics methods, the shape control is visible at design time.
For example, you can use shape and line controls to create a graphic of a building layout.

 Image
An image control is a graphical control that can display a picture.    It is like a picture box control but uses
fewer resources, repaints faster, and supports only some of the picture box properties, methods, and
events.
For example, you can place a bitmap of your company logo in an image control and display text about
the company when the user clicks it.

 Line
A line control displays a horizontal, vertical, or diagonal line.    You can use line controls to draw lines on
forms.    Unlike the Line method, line controls are visible at design time.
You can use lines to display callouts on a graphic or to divide a form into sections.

 PictureBox
A picture box control is used to display graphics on your form and to draw graphics in code.    It can
display a bitmap, icon, or metafile.    As much of the picture as can be displayed within the picture
rectangle will be shown.
You can create animation in a picture box by manipulating the graphics properties and methods.

 OLE Container
The OLE container control lets you display data from another Windows-based application in your Visual
Basic application.
At run time, you can edit the data in an OLE container control from within the application in which it was
created.    When you finish your edits, you close the application, and the updated data is displayed in the
OLE container control on your form.

 Grid
The grid control displays a series of rows and columns.    At the intersection of a row and a column is a
cell.    A cell can contain text or graphics.
You can use a grid control to display a table of information.

 CommonDialog
The common dialog custom control allows you to display several commonly used dialog boxes: Open,
Save As, Print, Color, and Font.
When you draw a common dialog control on a form, it automatically resizes itself.    Like the timer
control, the common dialog control is invisible at run time.

 Data
The data control lets you create applications to display, edit, and update information from many types of
existing databases.    You can use other data-aware controls with the data control to display information
from the current record in a database.
Visual Basic implements data access by incorporating the same database engine that powers Microsoft
Access.

 DBCombo
The data-bound combo box is a data-aware combination list box and text box.    The list can be filled
automatically from a data control.    The user can either choose an item from the list, or enter a value in
the text box.   
You can use the data-bound combo box to provide read-write access to a specified text data field
selected from the list.

 DBGrid
The data-bound grid is composed of multiple records.    The grid can be filled automatically from a data
control.    The user can either choose an item from the grid, or enter a value in the new record.   
You can use the data-bound grid to provide read/write-access to a specified recordset.

 DBList
The data-bound list box is used to display a list of items from which the user can choose one.    The list
can be filled automatically from a data control.   
You can use the data-bound list box to provide read-write access to a specified data field selected from
the list.

    Adding Menus
This lesson covers:
· The Menu Editor
· Menus and menu commands
· Menu design guidelines

    Adding Menus
Menus consist of menu titles, menu items, and separator bars.    Every part of a menu is a menu control.

    Adding Menus
You use the Menu Editor to create menus for your form.
To open the Menu Editor, you first switch to the form to which you want to add a menu.    Then, choose
Menu Editor from the Tools menu or click the Menu Editor button on the Toolbar.

    Adding Menus
A menu is a control, like a text box or a command button.    Like other controls, a menu has a predefined
set of properties and events.

    Adding Menus
You use the Menu Editor to create menu controls and set their properties:
· Caption specifies a menu title, such as File or Edit, or an item on a menu, such as Open or Cut.

· Name the name used to refer to the menu control in code.

· Index a numeric value that uniquely identifies the menu control if it is part of a control array.

    Adding Menus
The text you enter in the Caption text box defines the menu name.    This is the text that appears on the
menu bar.

    Adding Menus
Inserting an ampersand (&) before a letter gives the user keyboard access to the menu. At run time, this
letter will be underlined.

    Adding Menus
The text in the Name box defines the menu's Name property.    This is used to refer to the File menu in
code.

    Adding Menus
After you enter the caption and name, you can click the Next button or press ENTER to create the File
menu control.

    Adding Menus
The highlight then moves to a new line, and the text boxes are reset to accept the next caption and
name.

    Adding Menus
To distinguish menu items from menu titles, you indent the menu items in the lower portion of the Menu
Editor.    To indent a menu item, select it and then click the right arrow button.

    Adding Menus

The File menu now consists of one command Exit.

    Adding Menus

Now, we'll add the second menu to the menu bar Country

and a command to the Country menu

Next Country.

    Adding Menus
When you close the Menu Editor, the menus are automatically displayed on the form.
To define how each menu command responds to a Click event, you write an event procedure for each
command.

    Adding Menus
You write event procedures in the Code window.
To open the Code window for a form, choose Code from the View menu, click the View Code button in
the Project window, or press F7.

    Adding Menus
We entered mnuFileExit as the Exit command's Name property.    The Name property is used to refer to
a control in code.
The Click event procedure is specified, as menu commands respond only to Click events.

    Adding Menus
We'll write code to make the application respond to the Exit command.    The code goes between the
Sub and End Sub statements in the Code window.

    Adding Menus
The code we entered will end the Countries of the World application when the user chooses the Exit
command from the File menu.

    Adding Menus
When creating menus, follow these standard menu design guidelines:
· Group related commands on a menu in a way that will make sense to users of your application.

For example, users familiar with Microsoft Windows may expect to find the New, Open, and Close
commands together on the File menu.      Look at existing Windows-based applications for examples.

· On long menus, separate groups of related commands with a separator bar.    Separator bars are
created by using a single hyphen (-) in the Caption box of the Menu Editor.

    Adding Menus
This lesson showed you how to create menus for your Visual Basic applications using the Menu Editor.
For more information on creating menus, see Chapter 10, "Menus," in the Programmer's Guide.

    Adding Menus

    Debugging Your Application
This lesson will cover:
· Compile errors
· Run-time errors
· Logic errors
· Visual Basic debugging tools

    Debugging Your Application
Despite your best intentions, it's common to make mistakes when writing code.

    Debugging Your Application
There are three types of errors you can make when writing code:

· Compile errors mistakes caused by incorrectly constructed code.

· Run-time errors mistakes that Visual Basic can detect while your program is running.

· Logic errors mistakes that cause an incorrect result, or that prevent your program from
running as expected.

    Debugging Your Application
Visual Basic provides tools to help you detect these problems before you compile your application.

    Debugging Your Application
Compile errors
Compile errors are caused by code that violates the rules of the Visual Basic language.    These include
syntax errors.

    Debugging Your Application
When you enter code in a Code window, Visual Basic checks the syntax as you move off a line.    If
you've made an error, Visual Basic displays an error message.

    Debugging Your Application
You can either go back and correct your mistake, press ESC and return to the error later, or press F1 to
get more information on the error.

    Debugging Your Application
One way to avoid problems caused by mistyped variable names is to use the Option Explicit statement.
The Option Explicit statement requires you to declare all variables prior to their use.

    Debugging Your Application
You can have Visual Basic place the Option Explicit statement automatically in every module you create
by choosing Options from the Tools menu and selecting the Require Variable Declaration option on the
Environment tab.

    Debugging Your Application
Run-time errors
To find run-time errors, you need to run your application.

    Debugging Your Application
With your application running, you can see how it works.
If Visual Basic detects an error in your code, it halts execution.

    Debugging Your Application
When an error is encountered, an error message displays the type of error encountered.    Clicking the
Debug button will take you to the Code window where you can view the code that caused the error.

    Debugging Your Application
The Debug window displays the code with a box around the line that caused the error.

    Debugging Your Application
In this case, the filename was not found because it was not entered correctly.    You can fix the error and
then continue running the application.

    Debugging Your Application
Some changes you make to your application, such as changing a constant or creating a new procedure,
will require you to restart the application.

    Debugging Your Application
Logic errors
Logic errors can be harder to find.    When your application runs, but you get results that aren't what you
expect, you've most likely made an error in logic.

    Debugging Your Application
It could be as simple as a mistyped or undeclared variable name, or as complicated as a statement
whose syntax is correct but whose outcome isn't what you expect.

    Debugging Your Application
Setting breakpoints to temporarily pause your application so you can
step through your code may help you find problems with logic.

    Debugging Your Application
To insert a breakpoint, position the cursor on the line of code where
you want execution to stop. Then choose Toggle Breakpoint from the
Run menu, or click the Toggle Breakpoint button on the toolbar.

    Debugging Your Application
When you start the application, it will run until it reaches the    breakpoint.

    Debugging Your Application
You can then step through code one statement at a time by choosing
Step Into from the Run menu, pressing F8, or clicking the Step Into
button on the toolbar to determine where there are problems.

    Debugging Your Application
To continue running your code from a breakpoint, choose the
Continue command from the Run menu, or click the Continue button
on the toolbar.

    Debugging Your Application
The Debug window allows you to examine code and watch expressions.   
It can be accessed only in break mode.

    Debugging Your Application
To ensure that your application is free of bugs, you need to test it in a variety of situations; for example:
· Use large and small values of numbers and strings.    Often these reveal limitations in the application.
· Ask other people to work with the application.    They may find problems with its design or discover

bugs you didn't anticipate.
· If your application stores or retrieves data, check to see that the information is handled correctly.
· Test how your application handles errors.

    Debugging Your Application
This lesson discussed three types of errors:
· Compile errors
· Run-time errors
· Logic errors

It also introduced the debugging tools available in Visual Basic.
For more information about debugging, see Chapter 20, ''Debugging,''    in the Programmer's Guide.

    Debugging Your Application

